
Suppléance Hépatique

Fouad BELAFIA

CHRU MONTPELLIER
CENTRE HOSPITALIER REGIONAL UNIVERSITAIRE

Service d'anesthésie Réanimation Saint Eloi (Pr Jaber)
Unité de réanimation et transplantation hépatique
Hôpital saint Eloi
Montpellier

Fonction de détoxication

fonction glycogénique

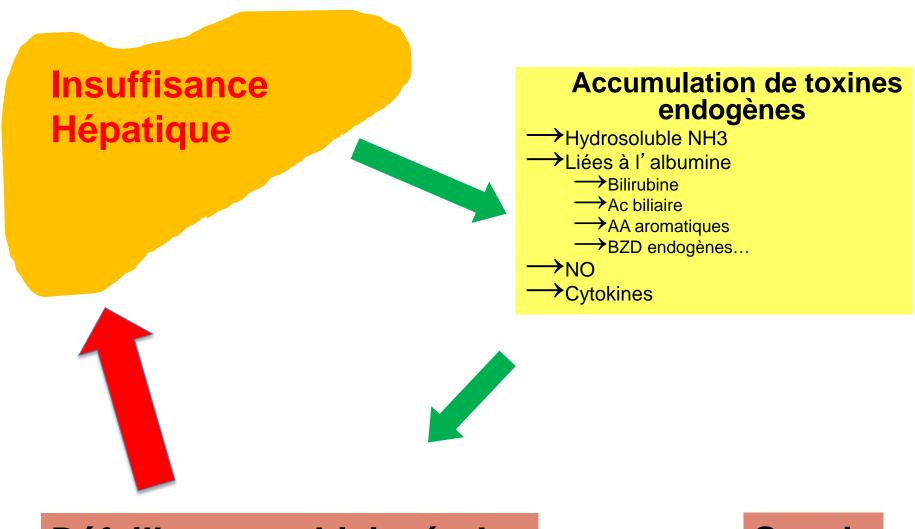
synthèse protéique

Catabolisme protéique

Albumine Protéines de l'hémostase Protéines de transport l'inflammation et facteurs de croissance

NH4+ en Urée (+ glutamine)

Synthène apoproteines
Homéostasie Cholestérol et TG
Stock et transf Vitamines Lipo

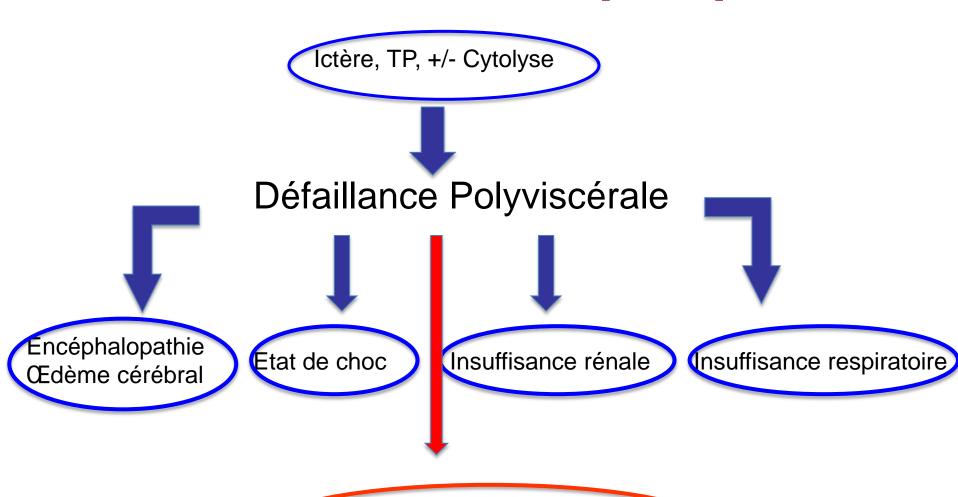


Fonction biliaire exocrine

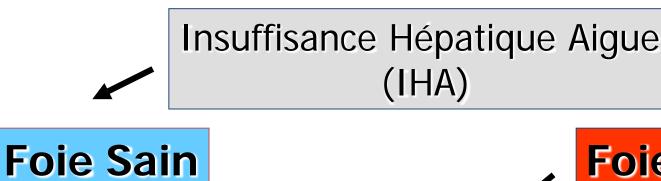
Bile et acides biliaires

Biotransformation des médicaments

Fonction de détoxication



Défaillance multiviscérales


Et

Sepsis

Insuffisance Hépatique

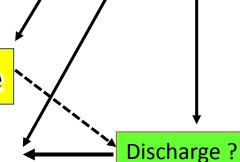
+ Sepsis, thrombopénie, coagulopathie

Foie Malade

Hépatite Fulminante

« acute »

Post-opératoire compliquée

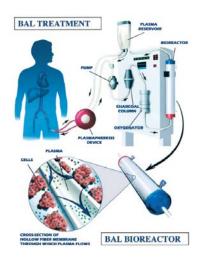

- Transplantation hépatique
- Hépatectomie

IHA sur IH chronique

« acute-on-chronic »

Suppléance hépatique

TRANSPLANTATION HEPATIQUE

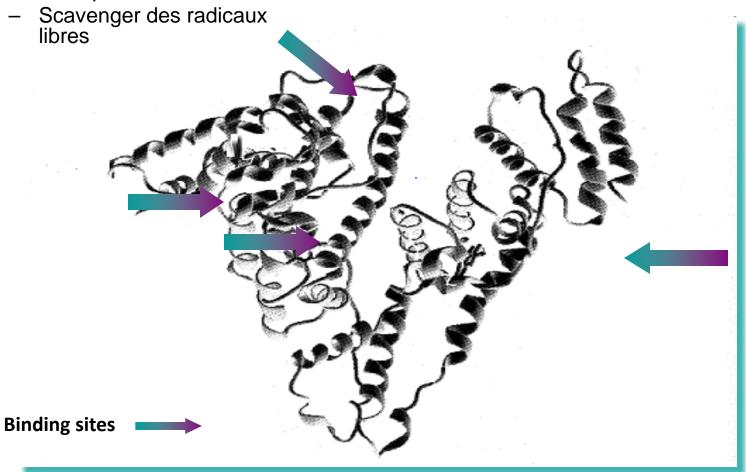


Discharge

Suppléance Hépatique

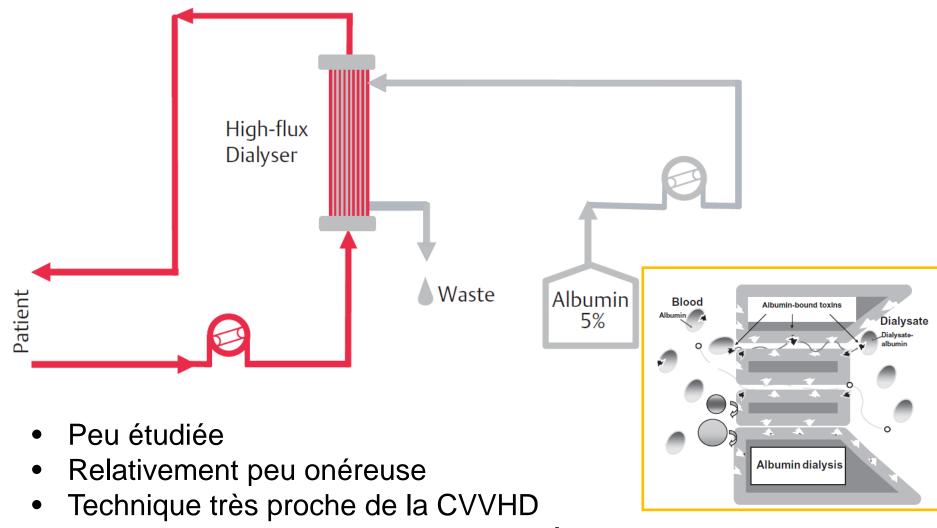
Les différentes techniques

Circulation extracorporelle

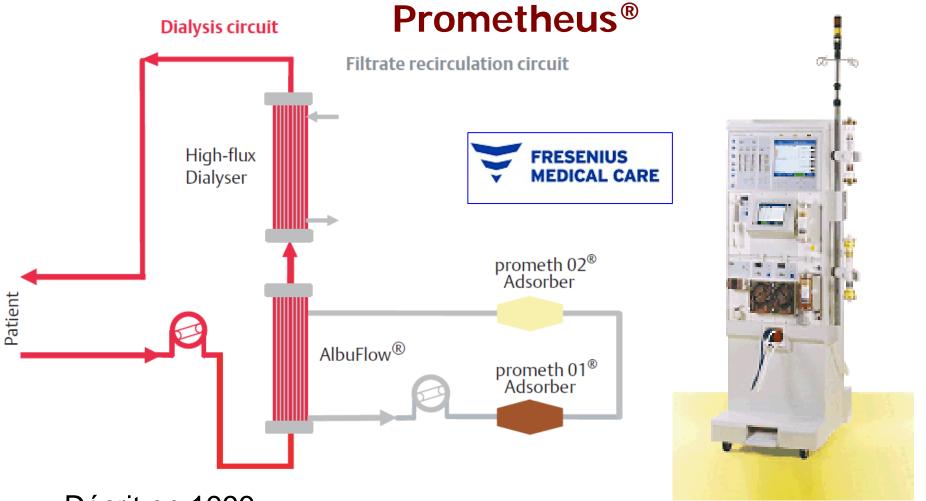

Foie Bio Artificiel

ELAD system (Vital Therapies) Hépatoblastome
HepatAssist (Arbios, formerly Circe) Porc
MELS (Charite Medical Center) Porc + Humain
BLSS (Excorp Medical) Porc
AMC BAL (Amsterdam Medical Center) Porc

- Le sang (ou plasma) est séparé des hépatocytes par une membrane semiperméable
 - Imperméable pour les hépatocytes et empêchant leur rejet (pas de besoin en traitement immunosuppresseur)
 - Perméable aux nutriments, à l'albumine (pour permettre la détoxification), et aux protéines synthétisées par les hépatocytes
 - Complexe
 - Cryoconservation des hépatocytes
 - Problème de biomatrice
 - Cout éfevé

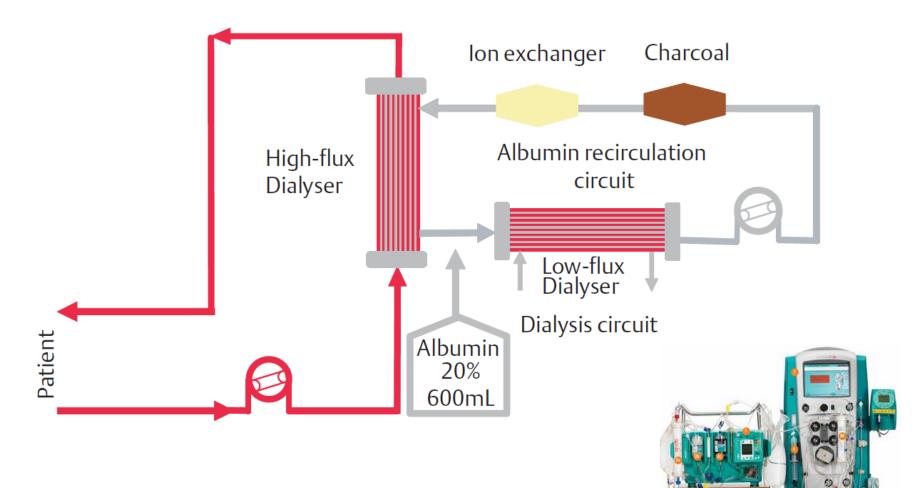

Pas de gain de survie

- Protéine plasmatique la plus abondante
- 66 kDa
- fonctions:
 - Pression oncotique
 - Transporteur



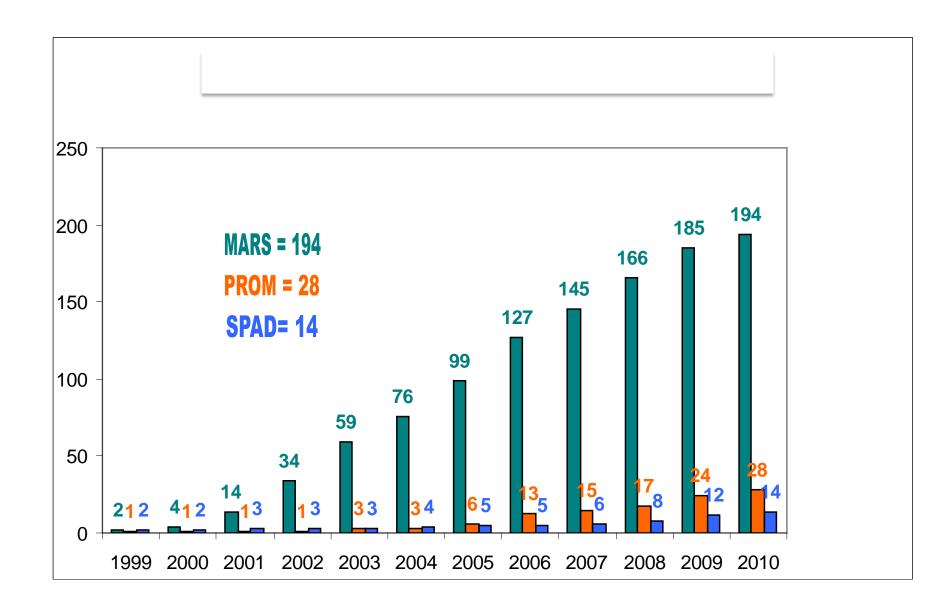
Albumine

Single Pass Albumin Dialysis (SPAD)



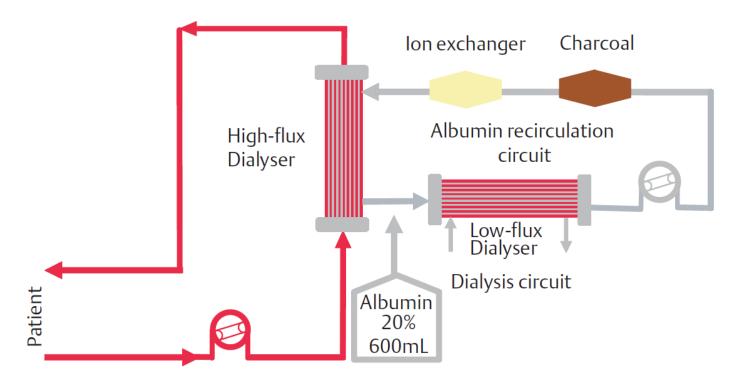
 Principes: le sang dialyse contre de l'albumine (2 à 4%) qui circule à 0,7 à 2 l/h. Pas de recyclage de l'albumine Fractionated Plasma Separation and Adsorption

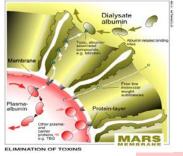
- Décrit en 1999
- Principes: 1) séparation de l'albumine du patient par une membrane(Albuflow, 300 kDa) qui est ensuite détoxifiée sur deux colonnes avant d'être réinjecté au patient, et 2) dialyse (haut flux)


Molecular Adsorbent Recirculating System (MARS®)

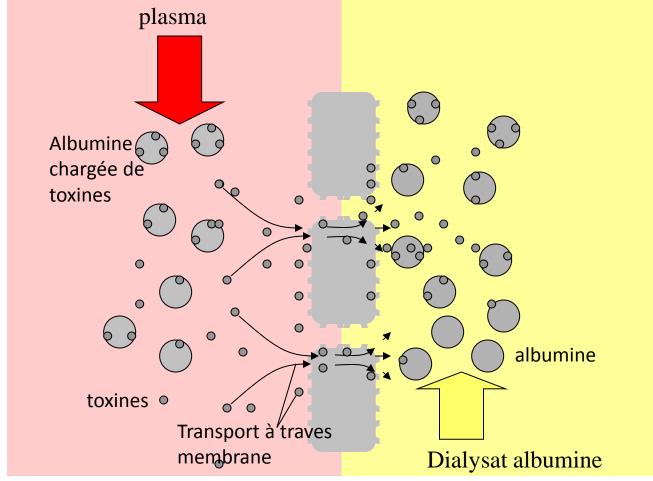
Baxter Acquires Gambro to Enhance Renal Therapy Portfolio

Tuesday, December 04, 2012 (0 Comments)

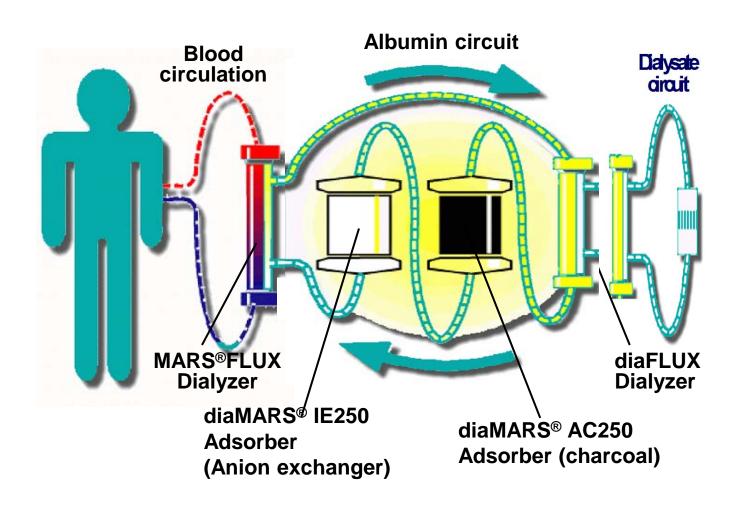



Système MARS ®

Molecular Adsorbent Recirculating System (MARS®)

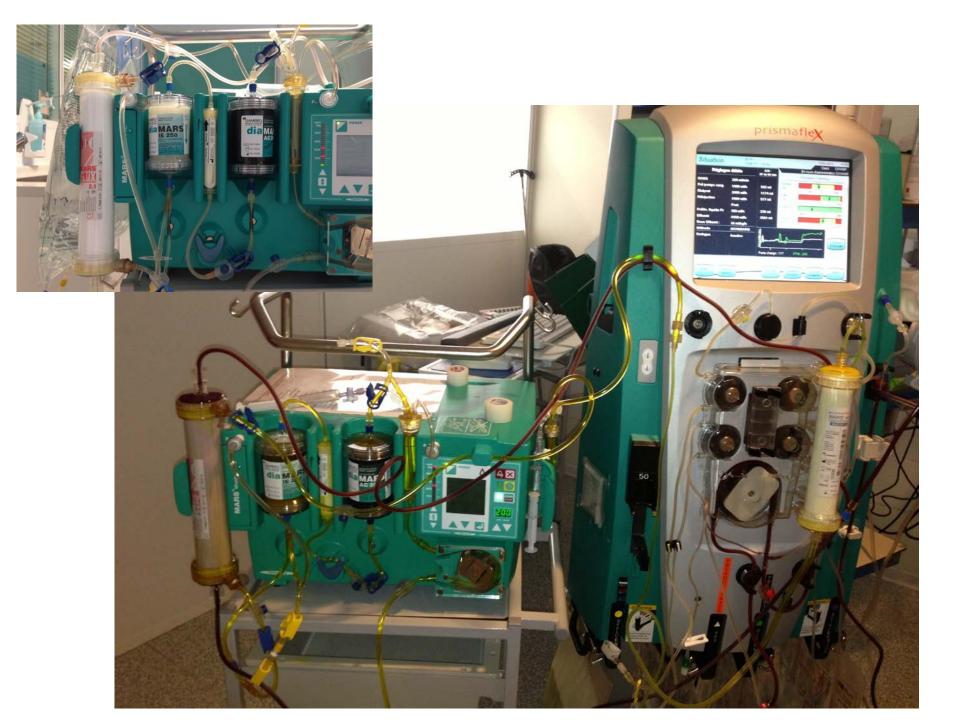

- Depuis 1993 (Stange J. Mitzner S. Artif Organs. 1993)
- Système le plus utilisé (et étudié)
- Principes: sang dialysé au travers d'une membrane imperméable à l'albumine contre une solution d'albumine 20%, elle-même détoxifiée en passant par des colonnes de charbon et échangeuses d'ions, et par dialyse

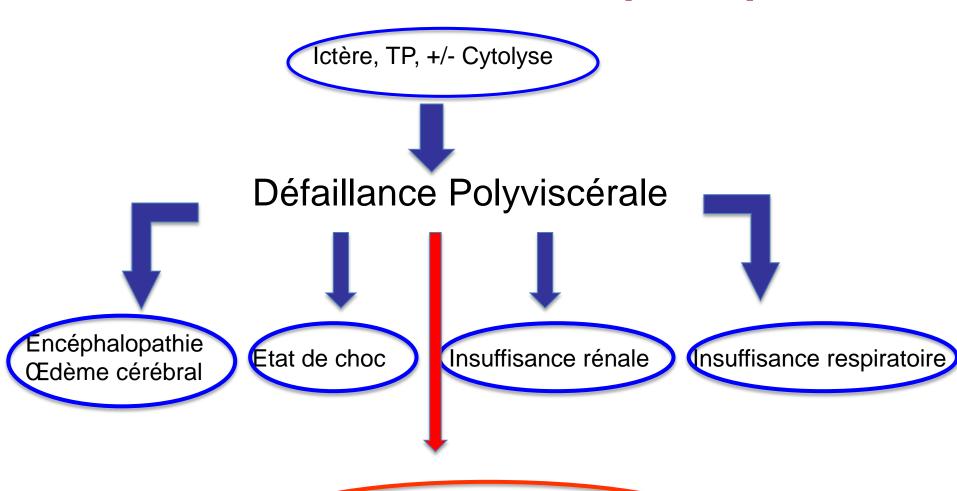
MARS® Flux

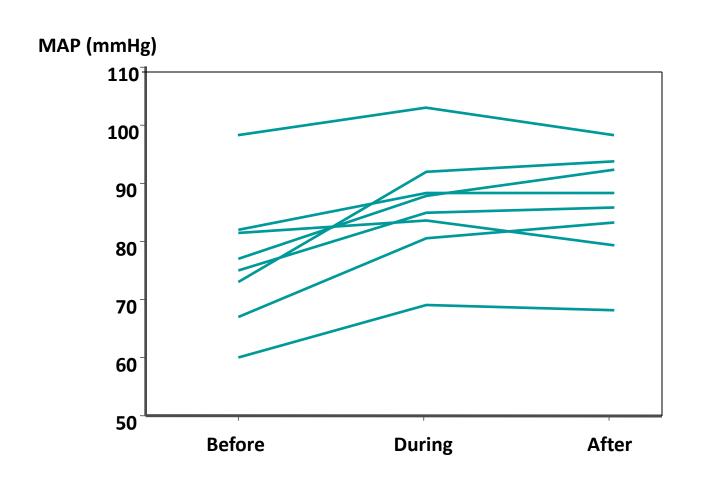


Stange J, Mitzner S. Int J Artif Organs. 1996 Nov;19(11):677-91

Système MARS ®

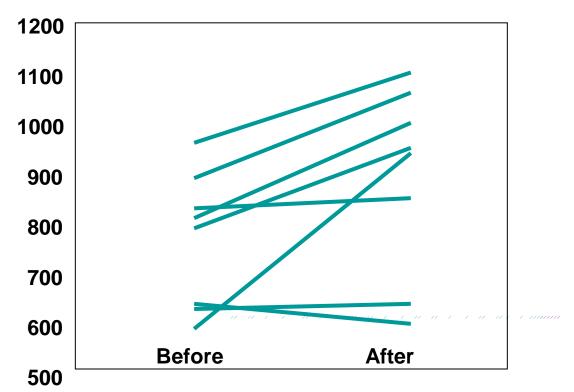



Système MARS ®

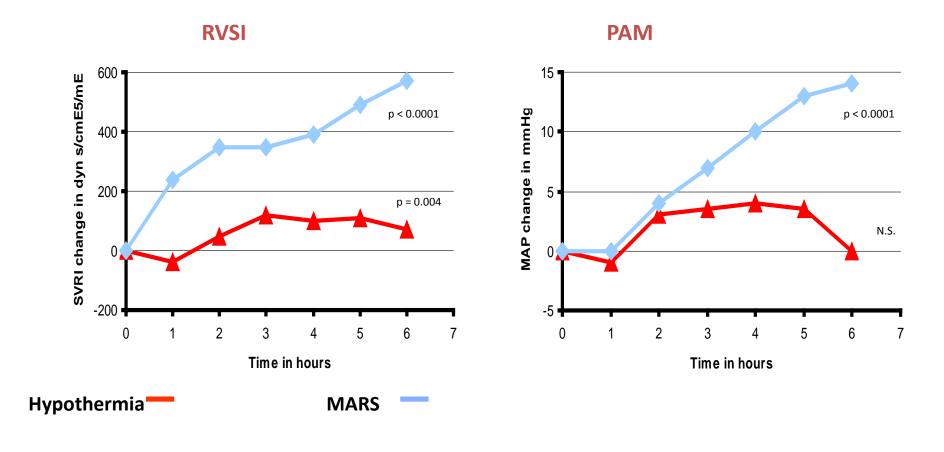

Molécules hydrosolubles	Molécules liées à l'albumine plasmatique Bilirubine				
Créatinine					
Urée	Acides biliaires				
Ammoniac	Tryptophane				
Lactate	Acides gras à chaîne moyenne et à chaîne				
	légère				
IL-6, Tumor Necrosis Factor	Acides aminés aromatiques				
	Mercaptans				
	Substances vasoactives				
	Cytokines				
	Benzodiazépines endogènes				
	Monoxyde d'azote				

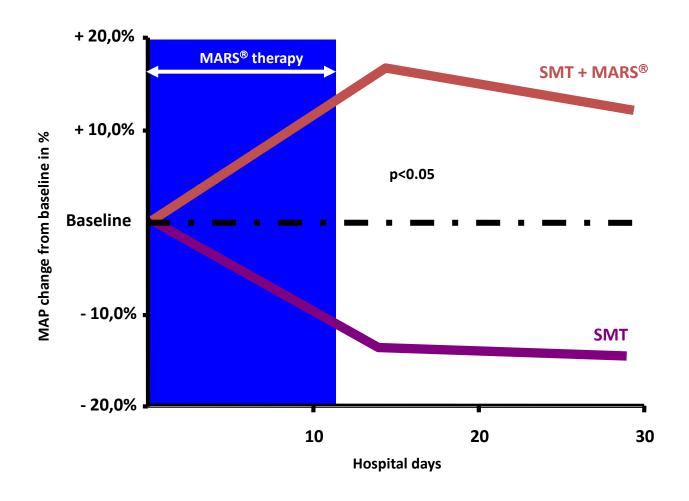
Système Mars ® Et défaillance d'organes

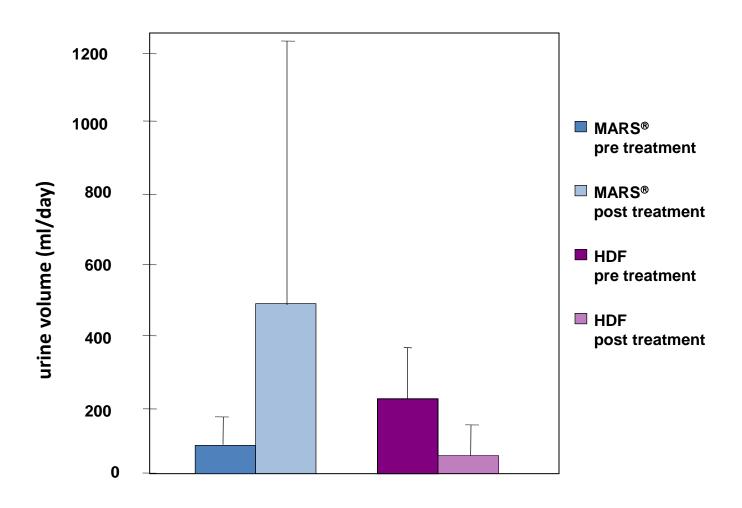
Insuffisance Hépatique



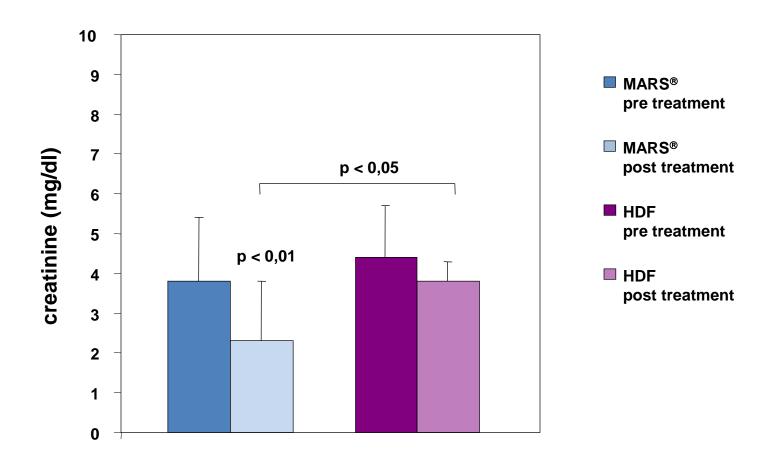
+ Sepsis, thrombopénie, coagulopathie



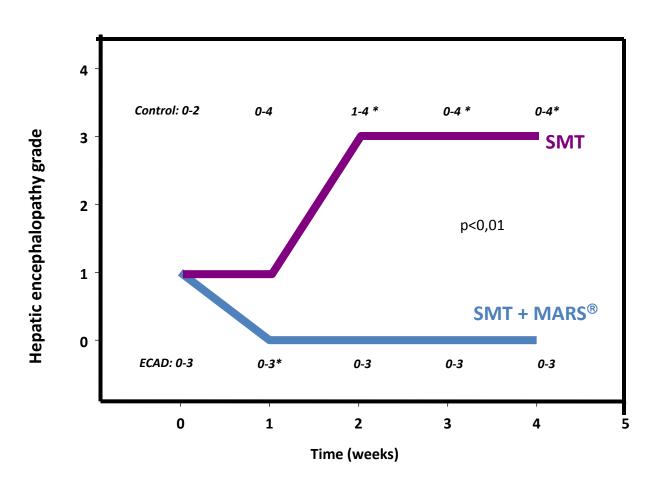

Augmentation des RVSI de 757 (580-948) à 884 (595-1086) dyn s/cm³/m²;p<0,05


MARS Dans I'IHA

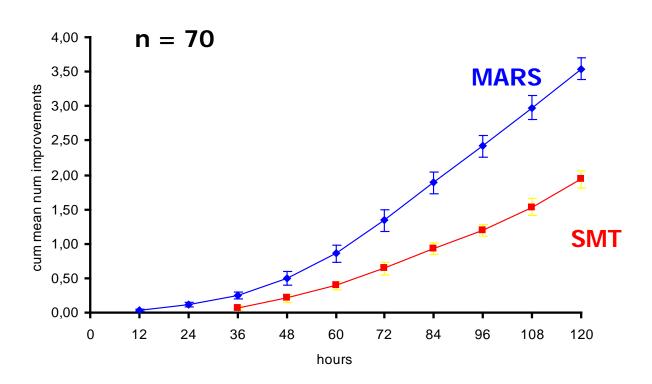
Randomisée, 3 centres, 23 patients



Impact du MARS® sur la fonction rénale



Impact du MARS® sur la fonction rénale

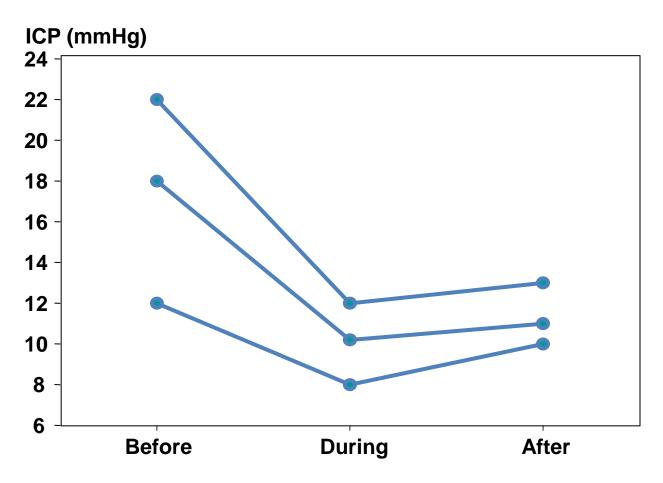


Impact du MARS® sur l'encéphalopathie hépatique

Impact du MARS® sur l'encéphalopathie hépatique

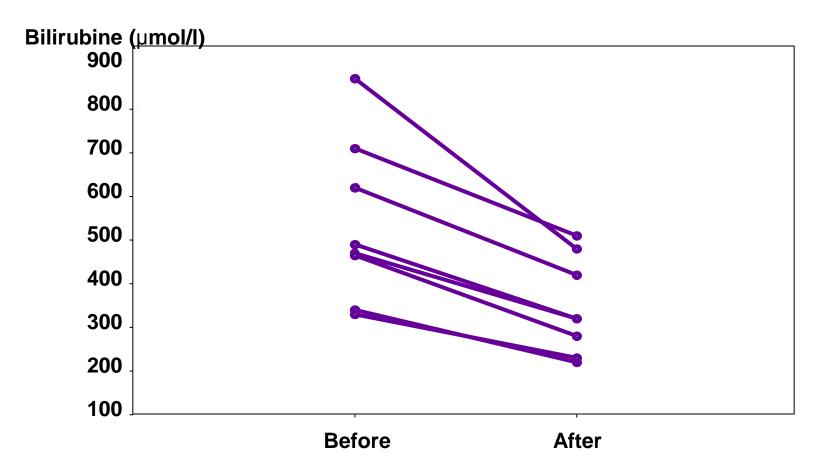
70 patients Grade 3 or 4
Mars 39 patients. 62% repondeurs vs 40%.
Amélioration de 2 grades.

Impact du MARS® Paramètres biologiques

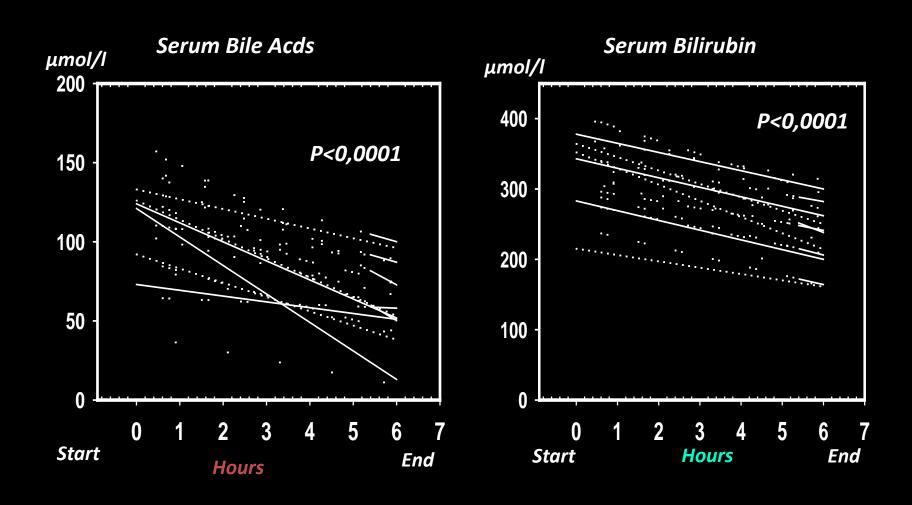

70 patients Grade 3 or 4
Mars 39 patients. 62% repondeurs vs 40%.
Amélioration de 2 grades.

	SMT			ECAD				
Test	Baseline	EOS	P	% Change	Baseline	EOS	P	% Change
	1.7	1.4		-13	1.7	1.4		-18
Creatinine mg/dL	(0.6-5)	(0.4-5.7)	0.096	(-77 - 67)	(0.4-5.6)	(0.4-4.5)	0.001	(-68 - 133)
	42.5	48		-1	40	20		-38
BUN mg/dL	(2-136)	(3-147)	0.927	(-68 - 229)	(6-171)	(4-84)	0.0001	(-88-217)
	12.2	12.8		10	15.8	16.1		-7
Bilirubin mg/dL	(2.3-58.9)	(3-57.4)	0.134	(-79-91)	(1.8-54.5)	(3-38.5)	0.064	(-60-352)
	65.4	54.5		-30	65.2	61		-35
Bile acids μ mol/L	(12.2-247.1)	(2-230)	0.008	(-85-9)	(38.1-249)	(11-207)	0.003	(-79-51)
	1.175	1.04		10	0.96	1.44		26
BCAA/AAA [1]	(0.62-2.49)	(0.35-5.5)	0.208	(52-378)	(0.49-2.98)	(0.57-3.37)	0.031	(-30-271)
	90.5	63		-24	104	60.5		-35
Ammonia μ mol/L	(34-786)	(32-308)	0.307	(-74-106)	(43-449)	(22-182)	0.001	(-84-30)

Abbreviation: EOS, end of study.



Impact du MARS® sur la PIC


Epuration de la bilirubine

Baisse de la bilirubine de 537 (324-877) à 351 (228-512) µmol/l; p<0,05

Schmidt et al. Liver Transpl 2001: 7(8): 709-12

Epuration de la bilirubine et acides biliaires

Le MARS® est indiqué dans deux situations

Dans l'attente d'une transplantation ou une éventuelle récupération

Décompensation aigue de La Cirrhose

Artificial and bioartificial support systems for liver failure (Review)

Liu JP, Gluud LL, Als-Nielsen B, Gluud C

Avant 2002

483 patients insuffisance hépatique Mars, Hepatassist...

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in *The Cochrane Library* 2007, Issue 4

Artificial and bioartificial support systems for liver failure (Review)

Liu JP, Gluud LL, Als-Nielsen B, Gluud C
2002

Comparison 1. Support systems versus standard medical therapy

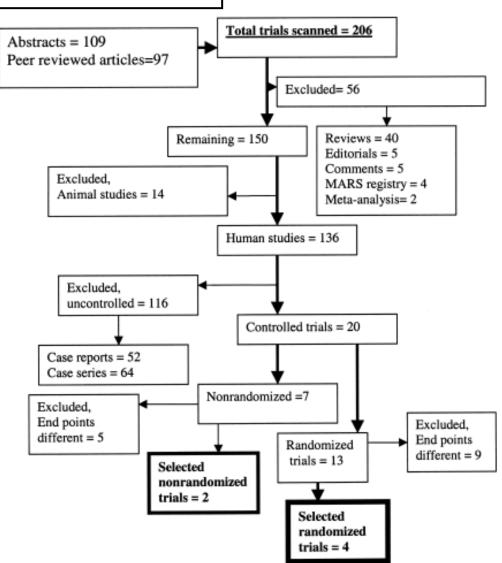
Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Mortality	12	483	Risk Ratio (M-H, Random, 95% CI)	0.86 [0.65, 1.14]
2 Bridging to transplantation	4	65	Risk Ratio (M-H, Random, 95% CI)	0.87 [0.70, 1.09]
3 Hepatic encephalopathy	8	233	Risk Ratio (M-H, Random, 95% CI)	0.68 [0.53, 0.88]
4 Adverse events	6	149	Risk Ratio (M-H, Random, 95% CI)	2.38 [0.76, 7.47]
4.1 Bleeding	6	101	Risk Ratio (M-H, Random, 95% CI)	1.74 [0.34, 8.99]
4.2 Infection	1	24	Risk Ratio (M-H, Random, 95% CI)	3.00 [0.13, 67.06]
4.3 Coagulopathy	1	24	Risk Ratio (M-H, Random, 95% CI)	4.0 [0.52, 30.76]

Analysis I.I. Comparison I Support systems versus standard medical therapy, Outcome I Mortality.

Review: Artificial and bioartificial support systems for liver failure

Comparison: I Support systems versus standard medical therapy

Outcome: I Mortality

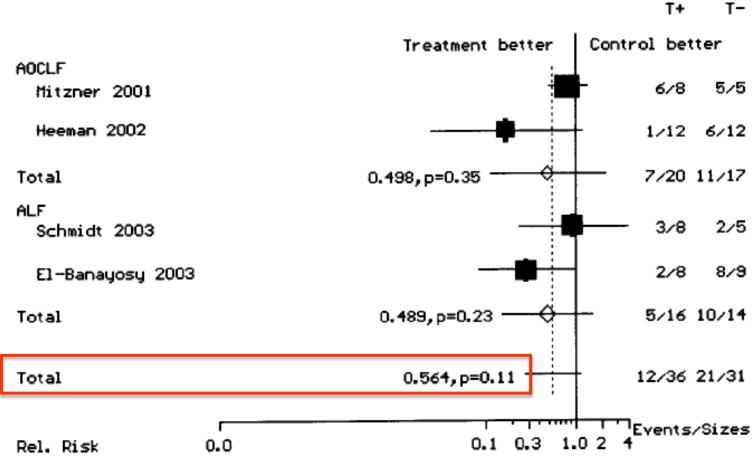

Study or subgroup	Experimental	Control	Risk Ratio M-	Risk Ratio M-
	n/N	n/N	H,Random,95%	H,Random,95%
Ellis 1996	4/12	5/12		0.80 [0.28, 2.27]
Ellis 1999	5/5	5/5		0.0 [0.0, 0.0]
He 2000	19/64	32/60		0.56 [0.36, 0.87]
Heemann 2001	1/12	6/12	·	0.17 [0.02, 1.18]
Hughes 1994	4/5	2/5	+	2.00 [0.63, 6.38]
Kramer 1998	4/10	4/10		1.00 [0.34, 2.93]
Mazariegos 1997	2/5	1/5		2.00 [0.26, 15.62]
Mitzner 2000	6/8	5/5		0.79 [0.49, 1.26]
O'Grady 1988	19/29	20/33	+	1.08 [0.74, 1.58]
Redeker 1973	14/15	9/13	-	1.35 [0.92, 1.98]
Stevens 2001	20/73	30/74	-	0.68 [0.42, 1.08]
Wilkinson 1998	3/6	4/5		0.63 [0.25, 1.56]
Total (95% CI)	244	239	+	0.86 [0.65, 1.14]
Total events: 101 (Experimen	ntal), 123 (Control)			
Heterogeneity: Tau ² = 0.09; Chi ² = 18.92, df = 10 (P = 0.04); ² = 47%				
Test for overall effect: Z = 1.03 (P = 0.30)				
			0.1 0.2 0.5 1 2 5 10	

Favours experimental Favours control

Molecular Adsorbent Recirculating System for Acute and Acute-on-Chronic Liver Failure: A Meta-analysis

1974 - 2002

Mohammed S. Khuroo, Mehnaaz S. Khuroo, and Karim L.C. Farahat¹



Khuroo MS et al Liver Transpl, 2004; 10: 1099-1106

All-cause-mortality

Relative risk, random model Bilateral CI, 95% for trials, 95% for MA

Khuroo MS et al Liver Transpl, 2004; 10: 1099-1106

Meta-analysis

Systematic review and meta-analysis of survival following extracorporeal liver support

B. M. Stutchfield¹, K. Simpson² and S. J. Wigmore¹

Janvier 1995 à janvier 2010

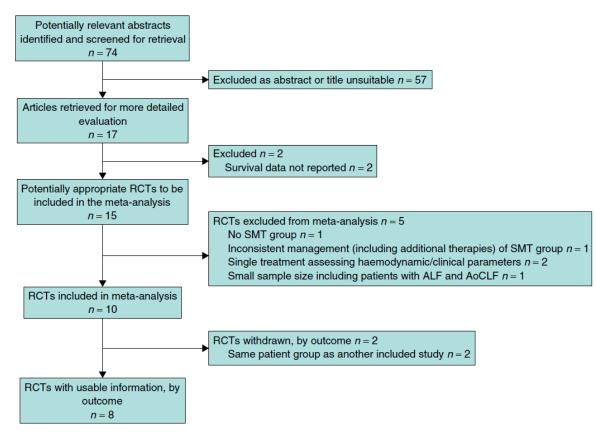


Fig. 1 Trial flow diagram according to PRISMA statement⁹. RCT, randomized controlled trial; SMT, standard medical therapy; ALF, acute liver failure; AoCLF, acute-on-chronic liver failure

Meta-analysis

Systematic review and meta-analysis of survival following extracorporeal liver support

B. M. Stutchfield¹, K. Simpson² and S. J. Wigmore¹

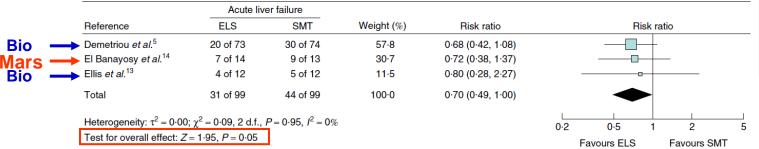


Fig. 2 Forest plot showing risk ratio with 95 per cent confidence interval for individual studies comparing extracorporeal liver support (ELS) with standard medical therapy (SMT) in acute liver failure. The Mantel—Haenszel random-effects method was used

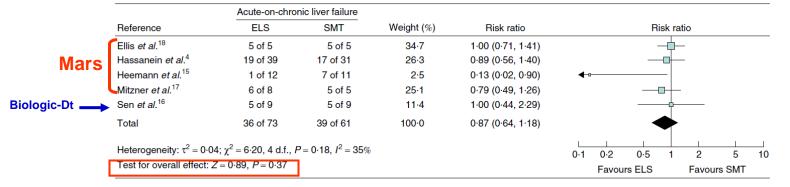


Fig. 3 Forest plot showing risk ratio with 95 per cent confidence interval for individual studies comparing extracorporeal liver support (ELS) with standard medical therapy (SMT) in acute-on-chronic liver failure. The Mantel-Haenszel random-effects method was used

Suppléance hépatique

Foie Sain

Hépatite Fulminante « acute » Post-opératoire compliquée

- Transplantation hépatique
- Hépatectomie

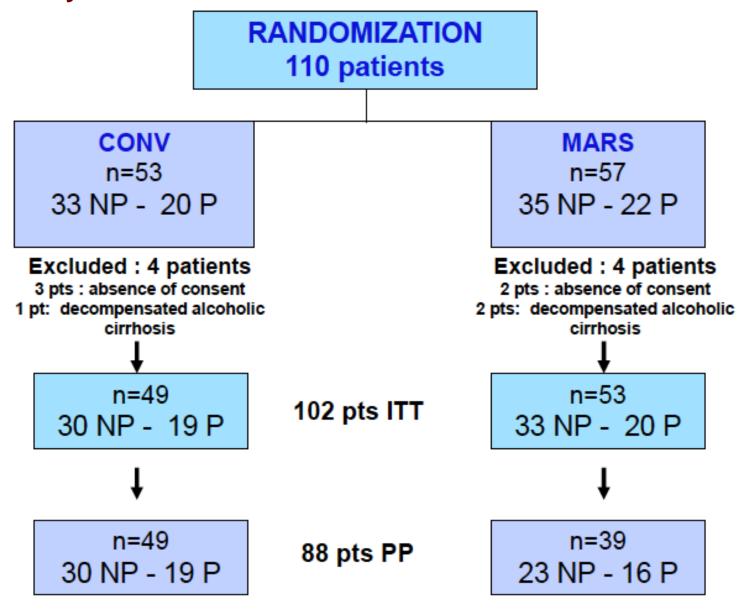
Foie Malade

IHA sur IH chronique

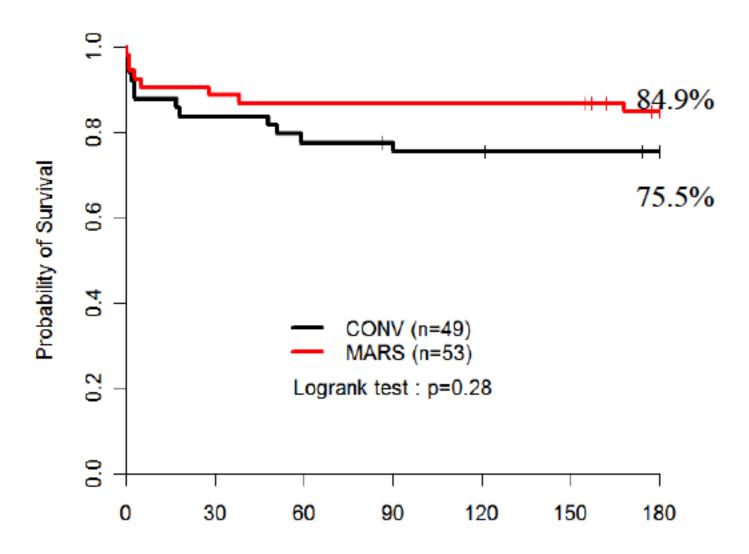
« acute-onchronic »

Suppléance hépatique

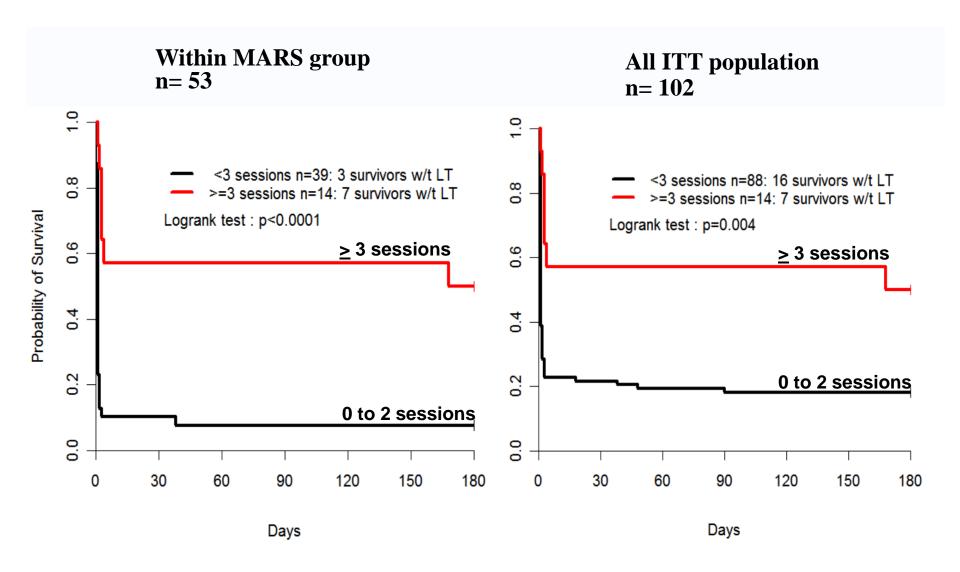
TRANSPLANTATION HEPATIQUE


Discharge ?

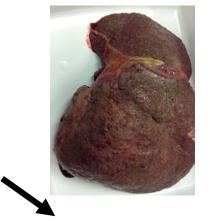
Fulmar Study



Saliba F, Camus C, Durand F, *et al.* Randomized controlled multicenter trial evaluating the efficacy and safety of albumin dialysis with MARS® in patients with fulminant and subfulminant hepatic failure. *Hepatology* 2008; **48** (Suppl. 4): 377A.


Fulmar Study

Survival curve for ITT patients


Saliba F, et al. FULMAR study group. Hepatology 2008; 48: Abstract LB4.

Saliba F, et al. FULMAR study group. Hepatology 2008; 48: Abstract LB4.

Suppléance hépatique

Insuffisance Hépatique Aigue (IHA)

Foie Sain

Hépatite

Fulminante

« acute »

Post-opératoire compliquée

- Transplantation hépatique
 - Hépatectomie

Foie Malade

IHA sur IH chronique

« acute-on-chronic »

Suppléance hépatique

TRANSPLANTATION HEPATIQUE

Discharge

Discharge?

Expert Reviews

Acute-on-chronic liver failure: current concepts on definition, pathogenesis, clinical manifestations and potential therapeutic interventions

Expert Rev. Gastroenterol. Hepatol. 5(4), 523-537 (2011)

Table 2. Molecular adsorbent recirculating system and Prometheus® in acute-on-chronic liver failure. Study (year) Controlled Ref. **Patients** Survival (%) Improvement in Biochemical CVS CNS **MARS®** Stange *et al.* (1999) 13 No Yes NA 69 [96] Yes [64] Schmidt et al. (2001) No Yes Yes No 50 [97] Jalan *et al.* (2003) 8 No Yes Yes Yes 50 Di Campli *et al.* (2005) 38 [98] 13 No Yes NA Yes 38 [99] Mitzner et al. (2000) 13 Yes Yes No Yes [100] Heemann et al. (2002) 23 Yes Yes Yes Yes 37.5 vs 0 Sen et al. (2004) 18 [101] Yes Yes No Yes 90 vs 55 NA [102] Hassanein et al. (2007) 70 Yes NA NA Yes

Yes

Yes

Yes

No

No

No

NA

No

NA

Laleman *et al.* (2006)

Prometheus®

Rifai et al. (2003)

Laleman *et al.* (2006)

18

18

CVS: Cardiovascular; MARS: Molecular adsorbent recirculating system; NA: Not applicable.

Yes

No

Yes

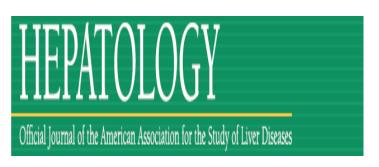
Expert Rev. Gastroenterol. Hepatol. 5(4), 523–537 (2011)

28

66 vs 33 vs 33

66 vs 33 vs 33

[65]


[89]

[65]

However, developing an effective liver assist technology has proven to be difficult because of the complexity of liver functions that must be replaced, as well as heterogeneity of the patient population. Initial experiences suggest a beneficial role of albumin dialysis, and in particular MARS, with regard to detoxification, hemodynamic improvement and renal recovery

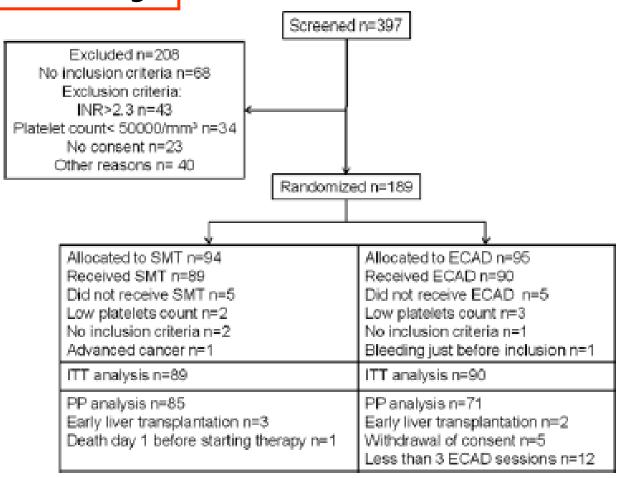
Trials should not combine acute liver failure and AoCFL, and different etiologies will have to be evaluated separately. The definite and published results of the recently terminated powered randomized controlled trials are urgently awaited.

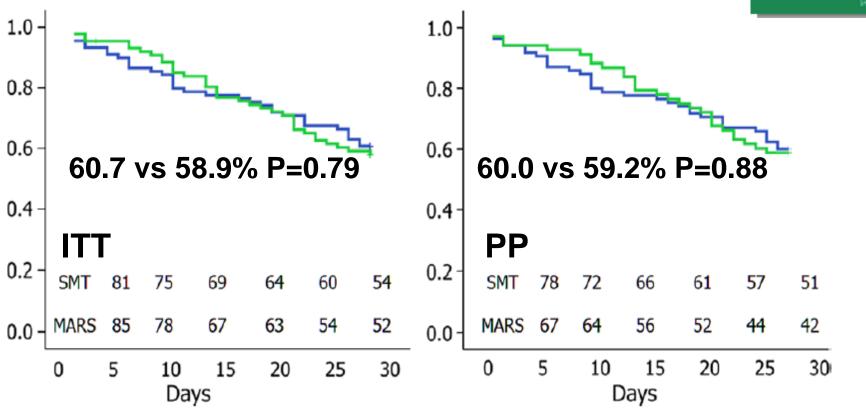
RELIEF et HELIOS Studies

Extracorporeal Albumin Dialysis With the Molecular Adsorbent Recirculating System in Acute-on-Chronic Liver Failure: The RELIEF Trial

Rafael Bañares, ^{1,2,3} Frederik Nevens, ⁴ Fin Stolze Larsen, ⁵ Rajiv Jalan, ⁶ Agustín Albillos, ^{3,7,8} Matthias Dollinger, ⁹ Faouzi Saliba, ^{10,11,12} Tilman Sauerbruch, ¹³ Sebastian Klammt, ¹⁴ Johann Ockenga, ¹⁵ Albert Pares, ^{3,16,17} Julia Wendon, ¹⁸ Tanja Brünnler, ¹⁹ Ludwig Kramer, ²⁰ Philippe Mathurin, ²¹ Manuel de la Mata, ^{3,22,23} Antonio Gasbarrini, ²⁴ Beat Müllhaupt, ²⁵ Alexander Wilmer, ⁴ Wim Laleman, ⁴ Martin Eefsen, ⁵ Sambit Sen, ⁶ Alexander Zipprich, ⁹ Teresa Tenorio, ⁷ Marco Pavesi, ²⁶ Hartmut H.-J. Schmidt, ²⁷ Steffen Mitzner, ¹⁴ Roger Williams, ²⁸ and Vicente Arroyo ^{3,16,17} on behalf of the RELIEF study group

Relief study




Fig. 1. Screening and randomization of patients.

HEPATOLOGY

Survie sans TH J28

SMT MARS + SMT

Survie sans transplantation J28:

- Survie sans transplantation à J90:
 - ITT 46.1 vs 42.2% P=0.71
- PP 44.7 vs 43.7% P=0.97

Survie sans transplantation J90:

Pas de différence significative

Table 4. Changes in Laboratory Parameters at Day 4

Laboratory Parameter	MARS	SMT	P value
Bilirubin (mg/dl)			
Baseline	26.30 (11.66)	26.65 (11.54)	
Day 4	17.58 (6.90)	24.15 (11.30)	
Percentage of change	-26.4 (26.12)	-8.92 (9.47)	< 0.001
(from baseline value)			
Creatinine (mg/dl)			
Baseline	2.24 (2.01)	2.13 (1.97)	
Day 4	1.43 (1.09)	1.67 (1.29)	
Percentage of change	20.04 (35.06)	-6.43 (33.50)	0.022
(from baseline value)			
Serum sodium (mEq/I)	400.04 (0.00)	400 50 (0.40)	
Baseline	132.81 (8.82)	132.59 (8.18)	
Day 4	136. 35 (5.83)	134.34 (7.89)	0.004
Percentage of change	2.94 (5.42)	1.44 (4.73)	0.081
(from baseline value)			
Albumin (g/l)	0.6.70 (F.CA)	07.47.(7.40)	
Baseline	26.78 (5.64)	27.47 (7.13)	
Day 4	28.42 (5.86)	28.61 (7.75) 5.67 (23.22)	0.587
Percentage of change (from baseline value)	7.83 (18.84)	5.67 (25.22)	0.567
INR			
Baseline	1.73 (0.32)	1.77 (0.34)	
Day 4	1.72 (0.44)	1.88 (0.49)	
Percentage of change	0.00 (19.82)	6.38 (23.63)	0.098
(from baseline value)	0.00 (10.02)	0.00 (20.00)	0.000
Hemoglobin (g/dl)			
Baseline	9.88 (1.59)	10.26 (1.99)	
Day 4	8.99 (1.16)	10.10 (1.79)	
Percentage of change	-7.16 (16.35)	-0.15 (15.47)	0.009
(from baseline value)	(====,	(====,	
Platelets (*10 ³ /mm ³)			
Baseline	133.17 (76.62)	122.71 (73.90)	
Day 4	91.14 (65.05)	114.08 (73.47)	
Percentage of change	-29.06 (29.37)	-1.80 (40.59)	< 0.001
_			

Pas de différence

à J21

Régression du syndrome hépato-rénal:

(Créatinine < 1.5mg/dL à J4 pour les SHR à l'inclusion)

- MARS (J4) 16/34 [47.1%]
- SMT 10/38 [26.3%]

OR 0.40; 95% CI 0.15-1.07; P=0.07

Diminution de l'encéphalopathie hépatique:

 $(II-IV\rightarrow 0-I)$

- MARS 15/24 [62.5%]
- SMT 13/34 [38.2%]

OR: 0.37; 95% CI 0.12-1.09; P=0.07

Ventilation mécanique et Durée d'Hospitalisation:

- Pas de différence significative

Effects of Fractionated Plasma Separation and Adsorption on Survival in Patients With Acute-on-Chronic Liver Failure

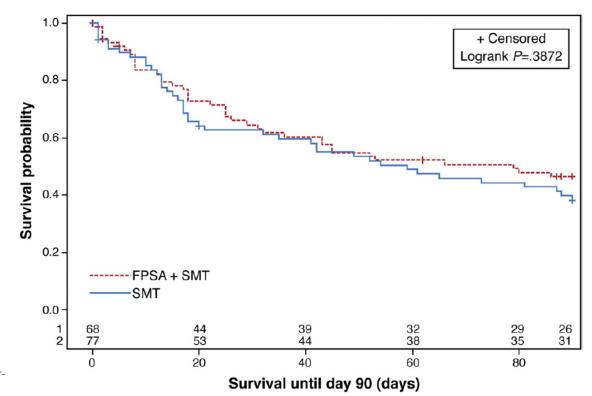
ANDREAS KRIBBEN,* GUIDO GERKEN,* SEBASTIAN HAAG,* STEFAN HERGET-ROSENTHAL,* ULRICH TREICHEL,*

Helios study

Screened n = 675► Excluded n = 530

incl./excl. criteria n=470 lacking informed consent n=24 Randomized n=145 other reasons n=36

Prometheus®)


	_
Allocated to SMT n = 68 Did not receive SMT n=0	Allocated to FPSA+SMT n =77 Did not receive FPSA n=5 death n=2 (days: 1, 2) transplantation n=1 (day: 1) withdrawal of consent n=1 (day: 0) variceal bleeding/drop-out n=1 (day: 4)
ITT Analysis n = 68 Unknown outcome n=2 withdrawal of consent n=1 (day 1) lost to follow-up n=1 (day 20)	ITT Analysis n = 77 Unknown outcome n=7 withdrawal of consent n=2 (days: 0, 87) lost to follow-up n=5 (days: 1, 2, 5, 62, 88)
PP Analysis n = 54 Excluded n=14 < 4 days in the study n=8 SMT violation* n=4 violation of incl./excl. criteria n=4	PP Analysis n = 55 Excluded n= 22 < 4 days in the study n=12 SMT violation* n=3 FPSA violation** n=8 violation of incl./excl. criteria n=3

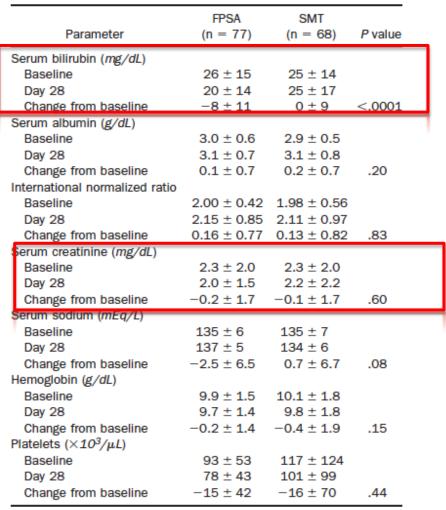
Effects of Fractionated Plasma Separation and Adsorption on Survival in Patients With Acute-on-Chronic Liver Failure

ANDREAS KRIBBEN,* GUIDO GERKEN,‡ SEBASTIAN HAAG,‡ STEFAN HERGET-ROSENTHAL,* ULRICH TREICHEL,‡

Helios study

Figure 1. Kaplan–Meier survival curve; ITT population.

CONCLUSIONS:


Among all patients with AOCLF, extracorporeal liver support with FPSA does not increase the probability of survival. Further studies are needed to assess whether therapy might be beneficial in specific subsets of patients.

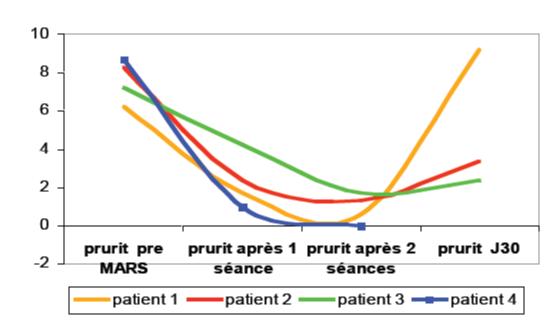
Effects of Fractionated Plasma Separation and Adsorption on Survival in Patients With Acute-on-Chronic Liver Failure

ANDREAS KRIBBEN,* GUIDO GERKEN,‡ SEBASTIAN HAAG,‡ STEFAN HERGET-ROSENTHAL,* ULRICH TREICHEL,‡

Table 3. Effects of Treatment on Liver and Renal Function and Other Laboratory Parameters

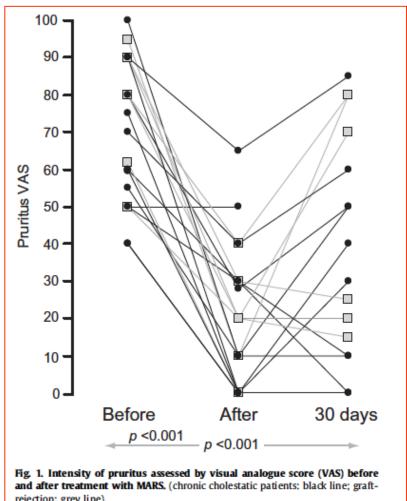
Helios study

Efficacité sur le prurit



Albumin liver dialysis as saving procedure in cholestatic liver disease and intractable pruritus.

Lemoine M, Revaux A, Francoz C, Ducarme G, Brechignac S, Jacquemin E, Uzan M, Ganne-Carrie N.


World J Gastroenterol. 2008 Nov 14;14(42):6572-4

- 2 séances de 8H/J
- Evaluation clinique pré et post MARS
 - Prurit (EVA)
 - Asthénie
- Evaluation biologique
 - Bilirubine, plaquette, TP, acides biliaires

Treatment of resistant pruritus from cholestasis with albumin dialysis: Combined analysis of patients from three centers

Albert Parés^{1,*}, Manuel Herrera², Juan Avilés³, Miquel Sanz¹, Antoni Mas¹

rejection: grey line).

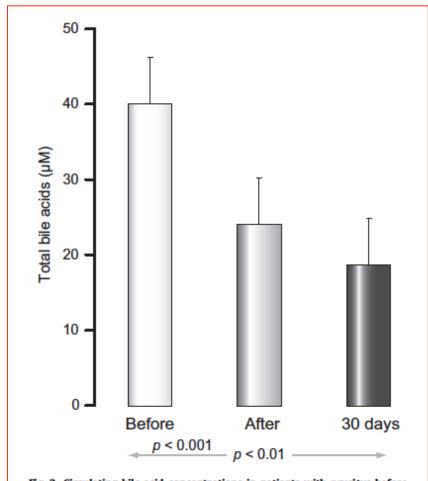


Fig. 2. Circulating bile acid concentrations in patients with pruritus before and after treatment with MARS.

Intérêt en toxicologie

- Insuffisance hépatique d'origine toxique

champignons Paracétamol

- Elimination des médicaments liés à l'albumine

Phynétoine

Théophyline

Antagonistes calciques

Valproate de sodium

Complications

Ceux d'une circulation extracorporelle

Thrombopénie

CIVD

Baisse du Fibrinogène et facteurs de coagulation Déglobulisation

CONCLUSION (1/3)

- Aucun moyen ne permet de remplacer efficacement les multiples fonctions hépatiques
- -Suppléance hépatique = « SUPER DIALYSE » pour épurer les toxines à forte affinité pour l'albumine.
- Pas de suppléance de la fonction de synthèse
- Cout/bénéfice = non évalué

CONCLUSION (2/3)

- Efficace sur certains SYMPTOMES de l'insuffisance hépatique
 - Efficacité sur le prurit réfractaire
- Intérêt en toxicologie
- Etudes RCT = pas de réduction « évidente » de la mortalité sans transplantation dans l'insuffisance hépatique aigue ou dans la décompensation aigue de la cirrhose

CONCLUSION (3/3)

Objectif de la suppléance hépatique est :

Améliorer la survie de quelques jours

Pour permettre une transplantation hépatique Pour attendre une récupération hépatique et éviter la transplantation

Toujours

Après une prise en charge médicale optimale (défaillance hépatique, NAC, hypothermie, sepsis)

Avant le stade de défaillance multiviscérales, qui contrindique la transplantation

