

REVUE DES DM DE L'OXYGÉNOTHÉRAPIE HAUT DÉBIT (OHD)

Justine ZAMPA
Pharmacien assistant
CHU de Toulouse

Déclaration liens d'intérêts

Pas de liens d'intérêts à déclarer

I. Différentes thérapies de ventilation

Solution invasive

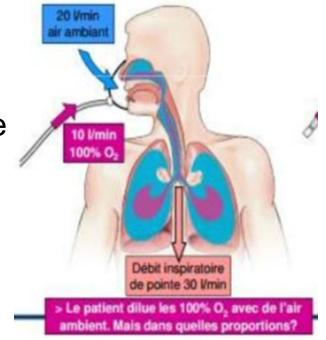
Ventilation mécanique

Oxygénothérapie standard

Oxygénothérapie haut débit

Ventilation non invasive

Ventilation invasive



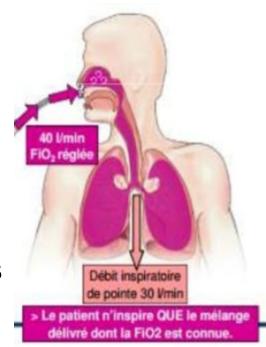
I. Généralités sur l'OHD A. Limites de l'oxygénothérapie standard

- FiO₂ variable et non maîtrisée
- Débit limité au niveau des interfaces
- Dilution de l'oxygène avec l'air ambiant en proportions inconnues (débit administré inférieur au débit inspiratoire de pointe)
- Tolérance de l'interface :
 - Contraignantes pour l'oralité
 - Sensation d'étouffement
 - Lésions cutanées
- Peu ou pas d'humidification

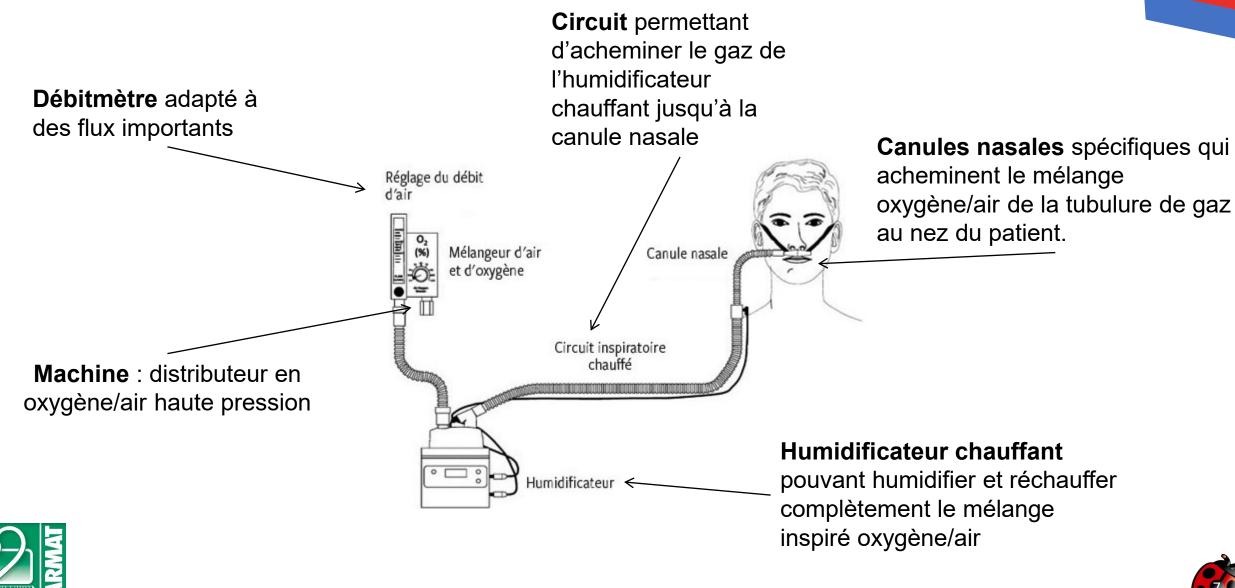
I. Généralités sur l'OHD B. Principe de l'OHD

Méthode d'oxygénation apportant au patient un **mélange oxygène/air réchauffé et humidifié à haut débit** en ventilation spontanée :

- → FiO₂ maîtrisée et ajustable (21 à 100%)
- → Débit allant jusqu'à 60 L/min
- Administration avec un débit fixe et une génération de pressions variables
- → Humidification/réchauffement impératifs pour rendre le haut débit compatible avec la physiologie des voies aériennes supérieures



I. Généralités sur l'OHD B. Principe de l'OHD


- Seul le mélange air/oxygène est inspiré, dans des proportions connues et maîtrisées (débit administré > DIP)
- Utilisation en continu (14 jours) ou en alternance avec des séances de VNI (maintien des bénéfices de la VNI)
- Nécessite un appareillage adapté et des interfaces spécifiques (canules pour haut débit nasal)

II. Matériel utilisé

II. Matériel utilisé A. Machine

Machines capables de réaliser un **mélange d'air et d'oxygène à FiO₂ contrôlée** :

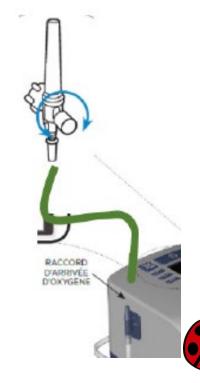
- Sources d'oxygène : oxygène mural (ou bouteilles d'oxygène pour des débits moindres)
- Sources d'air : air mural ou air ambiant

Mélangeurs air/oxygène

Ventilateurs avec fonction OHD

II. Matériel utilisé A. Machine

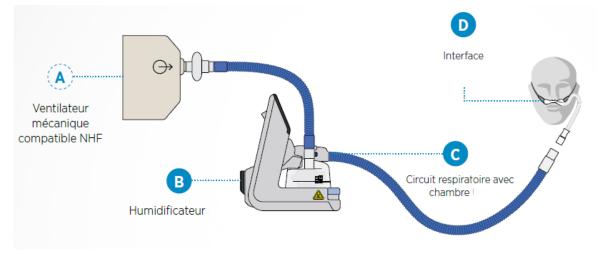
<u>Mélangeurs air/oxygène – dispositifs d'OHD dédiés :</u>



- Réglage sur la machine de la température (pour l'humidification) et du débit total (précision des réglages différente selon les fournisseurs)
- Réglage de la FiO₂ via un débitmètre/rotamètre externe spécifique pour les hauts débits (en général fournis avec les machines)

Branchement sur secteur

Attention ces dispositifs ne sont pas des supports de vie !



II. Matériel utilisé A. Machine

Mode OHD des ventilateurs :

- Attention : tous les ventilateurs ne font pas de haut débit !
- Sélection du mode OHD sur le ventilateur
- Mises à jour possibles pour « upgrader » les ventilateurs pour l'OHD
- Pas besoin de débitmètres pour régler le débit en oxygène :

machine autonome

II. Matériel utilisé

B. Humidificateur chauffant

Dispositif permettant de réchauffer et d'humidifier les gaz :

Chambre pour humidification (« cocotte »)

- Plusieurs types de chambres selon le mode de remplissage ou le volume (auto-remplissage, remplissage manuel, chambres de petit volume, ...)
- Munies de raccords respiratoires pour connecter les circuits

Support pour l'humidificateur

- √ Réglage de la température
- ✓ Branchement sur secteur

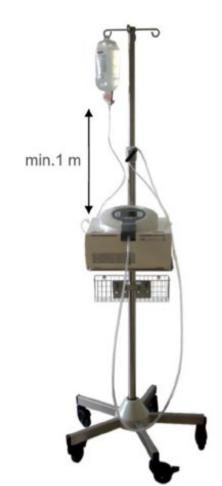
II. Matériel utilisé

B. Humidificateur chauffant

Pour l'OHD:

 Humidificateur chauffant « intégré » à la machine dédiée à l'OHD

 Humidificateur chauffant connecté via un circuit (mélangeurs, ventilateurs)



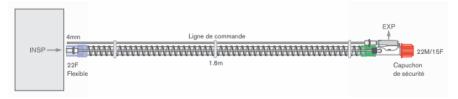
II. Matériel utilisé B. Humidificateur chauffant

Remplissage:

- Poches d'eau PPI, poches d'eau stérile pour irrigation (ne pas utiliser de solution saline ou d'autres liquides médicamenteux)
- Consommation : à un débit de 60 L/min, consommation moyenne d'1L d'eau toutes les 8h → à prendre en compte
- Chambres à auto-remplissage : pas de réglage du débit de la poche → niveau d'eau auto-régulé via des flotteurs de sécurité
- Maintien de la poche par une potence (fournie ou non avec la machine selon les fournisseurs)

II. Matériel utilisé C. Circuit

- Utilisation d'un circuit chauffé permettant de maintenir la température et l'humidité des gaz reliant l'humidificateur chauffant à l'interface
- Plusieurs technologies selon les fournisseurs : fil chauffant à l'intérieur du circuit, matériau permettant de limiter la condensation, système de « chaussette », circuits à circulation d'eau …



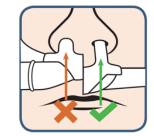
II. Matériel utilisé C. Circuit

2 types de circuits :

- Circuits monobranche (machines dédiées à l'OHD) :
 - →1 branche inspiratoire (le patient expire)

- Circuits bi-branche (ventilateurs) :
 - →1 branche inspiratoire + 1 branche expiratoire
 - → Pour l'OHD : seule la branche inspiratoire reste branchée pour

connecter l'interface



Ventilateur

II. Matériel utilisé D. Interface patient

- Interfaces spécifiques = canules nasales haut débit
- Permettent de maintenir l'humidification et le réchauffement jusqu'au nez du patient (fil chauffant en partie ou sur la totalité de la canule, matériau perméable à la vapeur d'eau, ...)
- Références différentes selon les fournisseurs :
 - Selon la taille de la narine du patient
 - Selon le débit appliqué ...
- Les embouts narinaires de la canule ne doivent pas obstruer les narines pour laisser le patient expirer

II. Matériel utilisé D. Interface patient

- Maintien sur la tête du patient via un harnais
- Systèmes de clip permettant d'accrocher le dispositif aux vêtements (≈ attache-tétine)
- Interfaces spécifiques :
 - Patients trachéotomisés
 - Pédiatrie
- Patient unique
- Durée d'utilisation variable selon les fabricants (en moyenne, 7 à 14 jours)

Exemples de fournisseurs (liste non exhaustive)

- FISHER & PAYKEL
- HAMILTON
- INTERSURGICAL
- MASIMO
- MEDIPREMA
- MICE GROUP
- PHILIPS
- RESMED
- SEBAC
- •

