

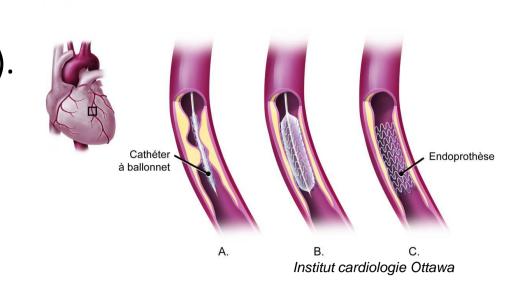
Lithotripsie intravasculaire : efficacité et sécurité en cardiologie interventionnelle

en comparaison à l'athérectomie rotationnelle Robin Calonnec¹, Anne Josephson¹, Gabriel Seret², Matthieu Perier², Ben Amer Hakim², Brigitte Bonan¹

¹ Service de Pharmacie à Usage Intérieur, Hopital Foch, Suresnes, France - Contact : robin.calonnec56@gmail.com

Introduction

L'angioplastie coronaire transluminale percutanée = dilatation des sténoses et implantation d'un stent. Parfois calcifications des lésions coronaires.


² Service de Cardiologie Interventionnelle, Hopital Foch, Suresnes, France

- Conséquences : limite le déploiement, lésion polymère, malaposition, plus de mort subite dans les suites .
- Préparation des lésions calcifiées avant angioplastie : ballons, athérectomie rotationelle (RA), lithotripsie intravasculaire (IVL).

Pourquoi comparer l'IVL à l'athérectomie rotationelle (RA)?

Le Rotablator®(RA) est la technique la plus efficace et la plus sûr du marché avant l'arrivée du Shockwave®(IVL).

- ✓ Etude Circ Interv¹ 2018 = Succès significativement supérieur avec RA par rapport aux ballons scoring/cutting
- Etude Rotaxus² 2013 = Sécurité du RA équivalente à l'angioplastie classique

Objectifs

Principal : comparaison du succès et de la sécurité d'emploi entre RA et IVL.

Secondaire : décrire et comparer les populations ayant recours aux 2 méthodes.

Lithotripsie intravasculaire (IVL)

Matériels et méthodes

Atherectomie rotationelle (RA) Rotablator®,(Boston Scientific)

Statistiques: Tests exacts de Fisher et de Wilcoxon-Mann-Whitney.

Etude : observationnelle, rétrospective et monocentrique.

Critères d'inclusion: Tous les patients traités par IVL et/ou RA entre Janvier 2020 et Juillet 2021

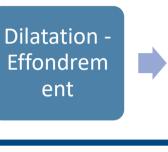
Recueil systématique de données (Easily®) :

- Anthropomorphiques (âge, sexe)
- Risques cardiovasculaires et antécédents
- Présentation clinique
- Caractéristiques des lésions
- Caractéristiques des procédures
- Complications intra-procédurales et intra-hospitalière

easily

Définition des critères de l'objectif principal :


Succès de la procédure :


➤ Sténose résiduelle de la lésion <50% ou <30% **Sécurité** du dispositif :

> Complications per-procédure > Evènement cardiovasculaire majeur (MACE)

Bulle de Energie électrique vapeur

coustique haute pression

Fracture Ca++

Résultats

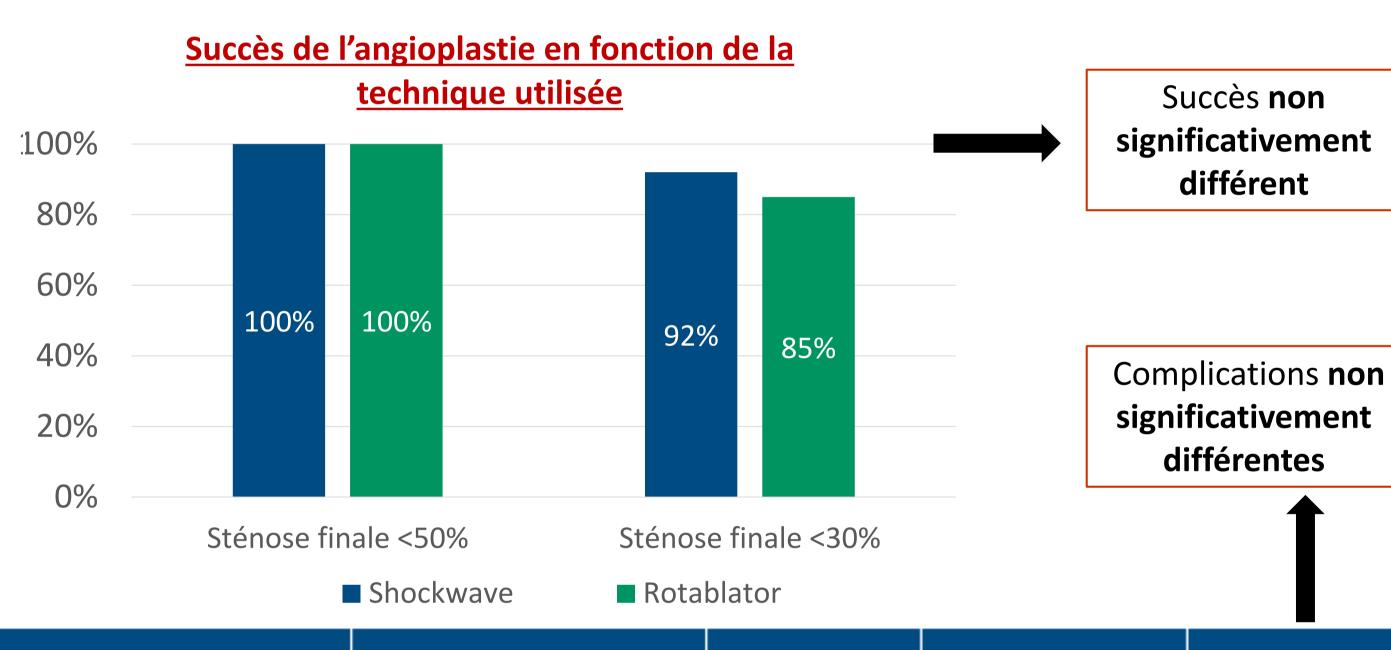
Description des populations :

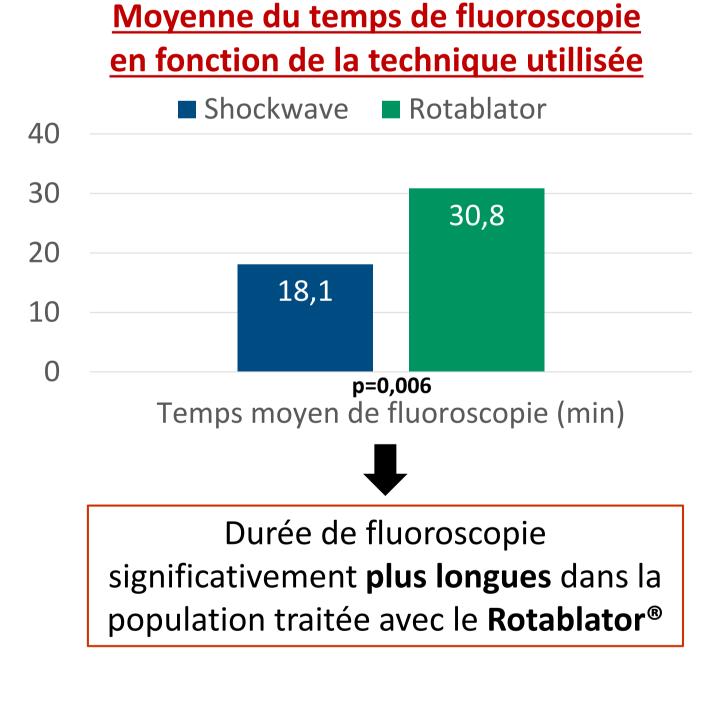
Sexe: proportion majoritaire d'hommes (70-80%) Facteurs de risques:

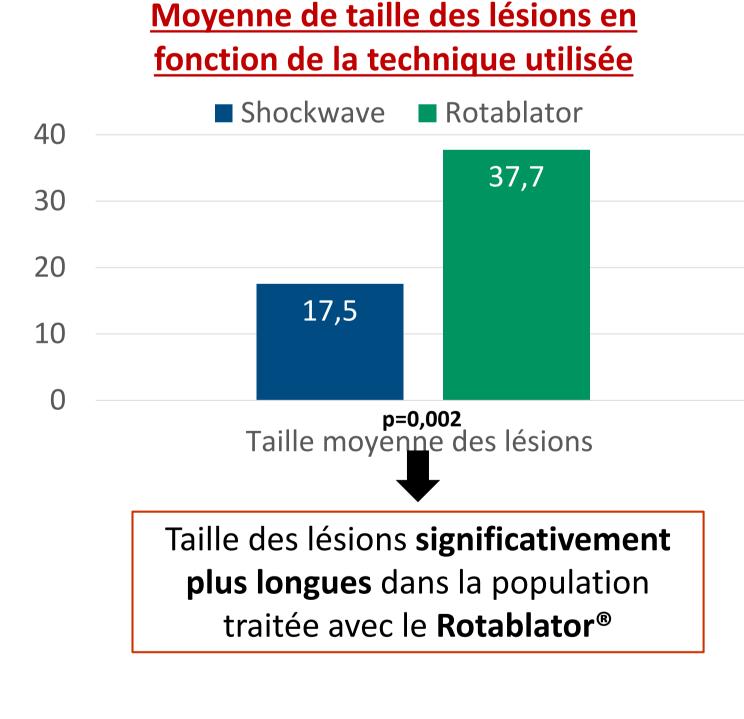
Une proportion de diabétiques élevée (+/-30%)

Une large majorité de patients en dyslipidémie (80-92%)

Indication majoritaire: Angor stable


Lésions ciblées majoritaires :


- Artère interventriculaire antérieure
- Calcification excentrique de type B2


Utilisation du Shockwave® pour les resténoses intrastent

Caractéristiques cliniques et démographiques non significativement différentes

Caractéristiques des lésions non significativement différentes

Dissection 0	ROTABLATOR	STATISTICS
Complications perprocédure Perforation/ dissection on dilatation site 0 No Reflow 0 Neo Thrombus 0 AKI 2 SCA 4a 4 Cardiac death 0 Non-cardiac death 0 NSTEMI / STEMI 0 AVC 0 Major hemorrhage 1	1	p=1
Perforation/ dissection on dilatation site	0	p=1
Neo Thrombus 0	0	p=1
AKI 2 SCA 4a 4 Cardiac death 0 Non-cardiac death 0 NSTEMI / STEMI 0 AVC 0 Major hemorrhage 1	2	p=0.48
SCA 4a	0	p=1
Cardiac death 0 Non-cardiac death 0 NSTEMI / STEMI 0 AVC 0 Major hemorrhage 1	3 (n=12)	p=0.645
Outcomes intra-hospitalier Non-cardiac death NSTEMI / STEMI AVC Major hemorrhage 1	5 (n=12)	p=0.688
Outcomes intra-hospitalier NSTEMI / STEMI 0 AVC 0 Major hemorrhage 1	1	p=1
AVC 0 Major hemorrhage 1	0	p=1
Major hemorrhage 1	0	p=1
	0	p=1
	1	p=1
BARC (type 3) 1	1	p=1
Tamponnade drainée 1	0	p=1

Discussion

Objectif secondaire

Objectif pri

Les 2 populations sont non significativement différentes.

- La durée de fluoroscopie plus longue pour la RA = la technique est plus irradiante et plus longue.
- Lésions plus longues chez les patients RA
 - La technique RA est plus complexe : 2 opérateurs, guide très long, lubrification par l'héparine et vasoconstricteurs.
- Succès non significativement différent entre les deux techniques.
- Complications non significativement différentes entre les deux techniques. Malgré tout, la seule complication per-procédure liée à l'IVL est la perforation distale non liée au ballon mais au guide.
 - ⇒**Probable meilleure sécurité**, à confirmer par des populations plus grandes

Choisir entre les deux techniques

	Rotablator®	Shockwave®
Avantages	 Beaucoup de données Remboursement depuis 2020 Lésions difficilement franchissables Lésions longues 	 Facilité technique Traiter bifurcations Sous expansion stent
Inconvénients	 Risque complications per- procédure Lésions intra-stent 	 Peu de données Prix et non remboursement Franchissement lésions Longueur du ballon (12mm)

Conclusion

Malgré son prix et son absence de remboursement le Shockwave® prend sa place dans la stratégie thérapeutique grâce à :

- Un très bon taux de succès
- Une **sécurité** qui semblerait supérieure
- La facilité d'utilisation par rapport au Rotablator®

- \Rightarrow Ne remplacera pas totalement le Rotablator[®],
- ⇒ Deux techniques complémentaires.