

Impression 3D : Réalité ou fiction ?

Généralités sur les techniques d'impression

Dr Lionel TORTOLANO – Pharmacien MCU-PH
Université Paris Saclay – Hôpitaux Universitaires Henri Mondor (APHP)

Déclaration liens d'intérêts

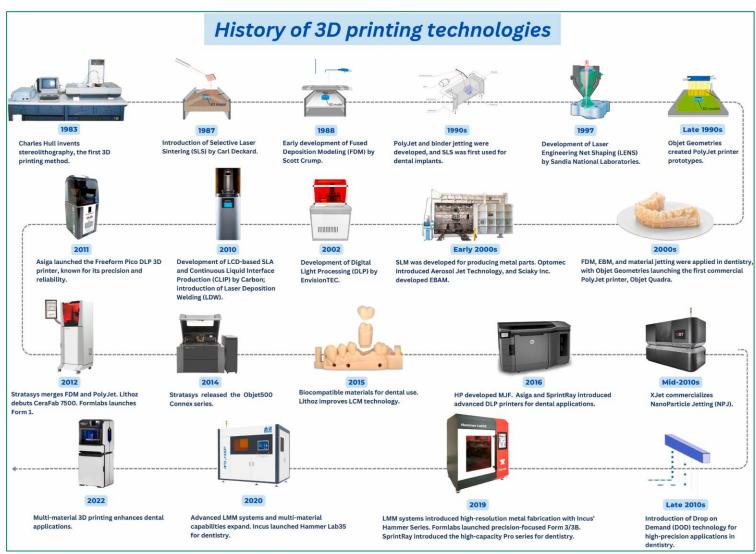
L'intervenant n'a aucun conflit d'intérêt à déclarer en lien avec cette présentation

Introduction

1960

Science Fiction

1980


Invention de l'impression 3D par stéréolithographie et par frittage laser

1990

Invention de l'impression 3D par dépôt de matière fondue

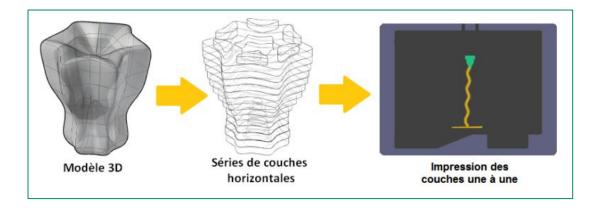
2009

Fin des brevets FDM
Démocratisation de l'impression 3D.
Diminution des coûts d'achat

doi.org/10.1016/j.bprint.2025.e00395

Introduction

Dispositifs médicaux

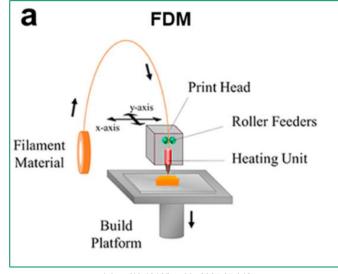

- Prototypage
- Surmesure
- Production en série

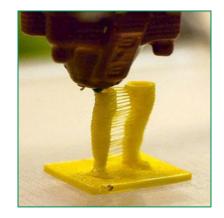
Médicaments

- Recherche
- Préparations magistrales
- Lévétiracétam
 SPRITAM®

Bioimpression

- Cellules souches
- Tissus vivants
- Mycélium

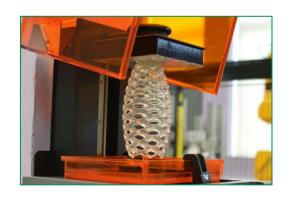


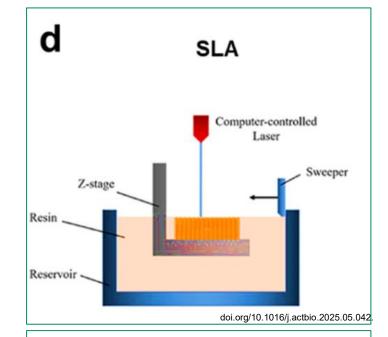


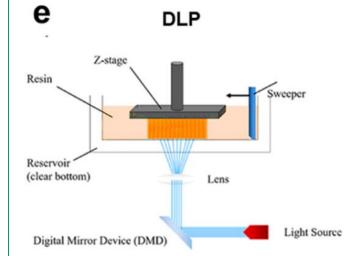
Dépôt de fil ou extrusion (FFF et FDM)

- Filament thermoplastique
- Fabrication couche par couche.
- Très répandue, bon marché.
- + : Peu coûteux, accessible, rapide
- - : Résolution moyenne, finition brute

doi.org/10.1016/j.actbio.2025.05.042.



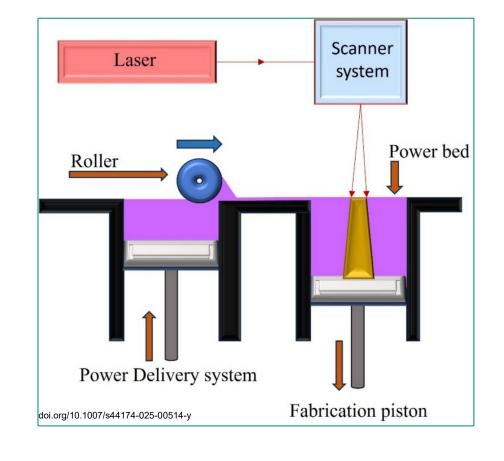



Photopolymérisation (SLA, DLP)

1er Brevet déposé

- Résine liquide
- Point par point (SLA laser) ou couche par couche (DLP).
- + : Haute précision, surface lisse.
- - : Résines fragiles; coûts

Principales techniques d'impression 3D

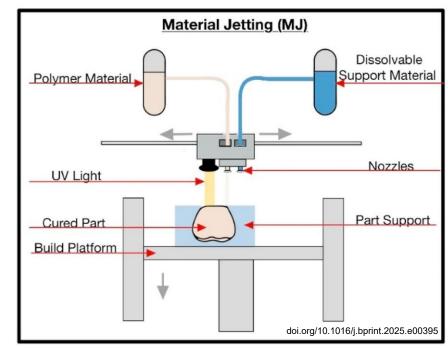

Famille / Technologie	Nom français	Principe	Matériaux utilisés	Applications typiques	Avantages	Limites
FDM / FFF (Fused Deposition Modeling / Fused Filament Fabrication)	Dépôt de fil fondu	Fil thermoplastique fondu et déposé couche par couche	ABS, PLA, PETG, composites	Prototypes, orthèses, pièces simples	Peu coûteux, accessible, rapide	Résolution moyenne, finition brute
SLA (Stereolithography)	Stéréolithographie	Résine liquide photopolymérisée par laser	Résines photosensibles	Modèles anatomiques, guides chirurgicaux	Haute précision, surface lisse	Résines fragiles, coût des matériaux
DLP (Digital Light Processing)	Photopolymérisation par projecteur	Durcissement d'une résine par projection de lumière	Résines liquides	Prothèses auditives, dentisterie	Très rapide, haute résolution	Pièces cassantes, taille limitée

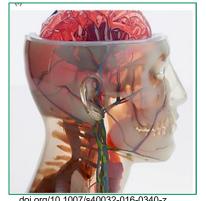
Fusion de poudre (SLS, SLM, DMLS, EBM)

- Poudre matière première
- Un laser fusionne des particules de poudre point par point.
- + : Précision, pièces complexes et solides.
- : coûts, post-traitements

Fusion de poudre (SLS, SLM, DMLS)

Technologie	Nom français	Source d'énergie	Matériaux utilisés	Applications typiques	Avantages	Limites
SLS (Selective Laser Sintering)	Frittage sélectif par laser	Laser	Poudres polymères (PA, TPU)	Prototypes fonctionnels, orthèses, pièces mécaniques	Polyvalence, pièces solides sans support	Finition de surface rugueuse
SLM (Selective Laser Melting)	Fusion sélective par laser	Laser	Poudres métalliques (titane, acier, aluminium)	Implants médicaux, aéronautique, pièces structurelles	Haute densité, propriétés mécaniques excellentes	Coût élevé, contraintes résiduelles
DMLS (Direct Metal Laser Sintering)	Frittage laser direct de métal	Laser	Alliages métalliques (CoCr, Inconel, titane)	Implants dentaires, prothèses, outillage	Haute précision, grande variété d'alliages	Post-traitements nécessaires
EBM (Electron Beam Melting)	Fusion par faisceau d'électrons	Faisceau d'électrons	Titane et alliages	Implants orthopédiques, pièces aéronautiques	Vitesse plus élevée, bonnes propriétés mécaniques	Moins précis que SLM, matériaux limités



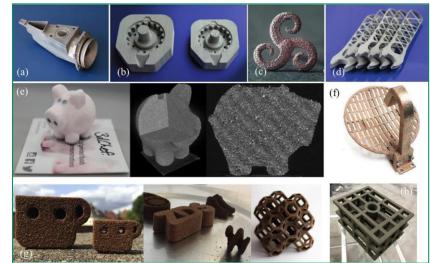


Projection de matière (MJM)

- Résine liquide
- Polymérisation par UV
- Polyjet

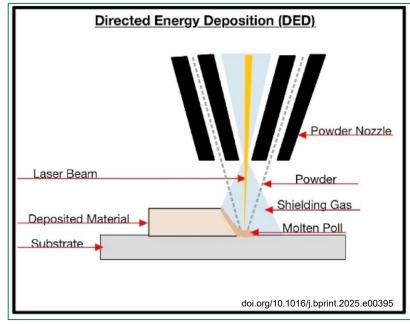
- + : Très grande précision, mélanges
- - : Support, vieillissement

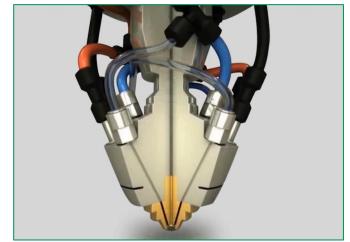




Jet de liant (Binder Jetting)

- Gouttelettes de liant projetées sur de la poudre pour la solidifier.
- Matériaux : sable, céramique, métal, bois.
- + : Pièces complexes sans support
- : Nécessite plusieurs étapes de post traitement.





Dépôt d'énergie dirigée (DED)

- Poudre ou fil métallique
- Fondu directement par une source d'énergie.
- + : Réparation
- - : Pièces rugueuses, faible précision.

Principales techniques d'impression 3D

Famille / Technologie	Nom français	Principe	Matériaux utilisés	Applications typiques	Avantages	Limites
PolyJet / MJM (Material Jetting)	Jet de matière	Projection de gouttelettes photopolymères durcies par UV	Photopolymères, multimatériaux	Prototypes réalistes, modèles médicaux	Multimatiériaux, haute précision	Coût élevé, fragilité
Binder Jetting	Jet de liant	Projection d'un liant sur un lit de poudre	Poudres céramiques, sable, métaux	Maquettes, outillage, prothèses dentaires	Rapide, grandes pièces possibles	Post-traitement nécessaire
DED (Directed Energy Deposition)	Dépôt d'énergie dirigée)	Fil ou poudre métallique fondu par laser/faisceau d'électrons	Alliages métalliques	Réparation de pièces, aéronautique, implants métalliques	Réparation possible, grande densité	Précision plus faible, surface rugueuse

